The 18th Workshop on Markov Process and Related Topics SDEs with supercritical distributional drifts and RDEs with subcritical drifts

Zimo Hao
Universität Bielefeld

Based on a joint work with Xicheng Zhang, Rongchan Zhu and Xiangchan Zhu and a joint work with Khoa Lê

Tianjin University, 31 July 2023
(1) Background
(2) SDEs
(3) RDEs

4 Future works

Regularization by noise

- Consider the following SDE:

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) \mathrm{d} s+\sqrt{2} W_{t}
$$

where $\left(W_{t}\right)_{t \geq 0}$ is a standard d-dimensional Brownian motion.

- (ODE): $b \in \mathbf{C}^{\alpha}(\alpha<1) \Rightarrow$ non-uniqueness;

Regularization by noise

- Consider the following SDE:

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) \mathrm{d} s+\sqrt{2} W_{t},
$$

where $\left(W_{t}\right)_{t \geq 0}$ is a standard d-dimensional Brownian motion.

- (ODE): $b \in \mathbf{C}^{\alpha}(\alpha<1) \Rightarrow$ non-uniqueness;
- (SDE): Well-posedness
\triangleright (Zvonkin 1974): b is bounded and Dini continuous;
\triangleright (Veretennikov 1979): b is bounded;
\triangleright (Krylov-Röckner 2005): $b \in L_{T}^{q} L_{x}^{p}$ with $d / p+2 / q<1$;
\triangleright (Röckner-Zhao 2022, Krylov 2021-2023): $b \in L_{T}^{q} L_{x}^{p}$ with $d / p+2 / q=1$;
\triangleright (Zhang, Xie, Zhao, Xia,...): Multiplicative noise cases.
- Methods: Relation between the SDEs and the Kolmogorov PDEs (Zvonkin's transformation, Itô-Tanaka's trick,...)

Motivations

- Navier-Stokes equations

$$
\partial_{t} u=\Delta u+u \cdot \nabla u+\nabla p=0, \quad \operatorname{div} u=0
$$

\triangleright (Constantin-Iyer 2008, Zhang 2012,...)

$$
\left\{\begin{array}{l}
X_{t}^{x}=x+\int_{0}^{t} u\left(s, X_{s}^{x}\right) \mathrm{d} s+\sqrt{2} W_{t}, \quad t \geq 0 \\
u(t, x)=\mathbf{P} \mathbb{E}\left[\nabla^{T}\left(X_{t}^{*}\right)^{-1}(x) \phi\left(\left(X_{t}\right)^{-1}(x)\right)\right]
\end{array}\right.
$$

$\triangleright u \in L_{t}^{q} L_{x}^{p}$ with $\frac{d}{p}+\frac{2}{q}=\frac{d}{2}$.
\triangleright Existence of the solution to SDE: (Zhang-Zhao 2021) $d / p+2 / q<2$ and div $u=0$.

- N-particle systems

$$
\mathrm{d} X_{t}^{N, i}=\frac{1}{N} \sum_{j=1}^{N} K\left(X_{t}^{N, i}-X_{t}^{N, j}\right) \mathrm{d} t+\mathrm{d} W_{t}^{i}
$$

$\triangleright K(x)$: Biot-Savart law, Coulomb potential, ...
$\triangleright K(x) \asymp|x|^{-d+1}$.

Motivations-distributional type

- Consider the following SDE:

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(X_{s}\right) \mathrm{d} s+\sqrt{2} W_{t}
$$

- Gradient flow
\triangleright (Bass-Chen 2001) $b=\nabla B$ with some $B \in \mathbf{C}^{\beta}$ and $\beta \in(0,1)$.
\triangleright (Flandoli-Issoglio-Russo 2017, Zhang-Zhao 2018) $b \in H^{-\alpha, p}$ with $\alpha \in\left[0, \frac{1}{2}\right]$ and $\alpha+\frac{d}{p}<1$.
- Brox diffusion (Sinai 1982, Brox 1986)
$\triangleright b=\xi \in \mathbf{C}^{-1 / 2-}$ is one-dimensional spatial white noise.
\triangleright (Delarue-Diel 2016) rough path \& (Cannizzaro-Chouk 2018) paracontrolled calculus: $b \in \mathbf{C}^{-2 / 3+}$ is some Gaussian noise.......
- Super-diffusive
$\triangleright b=\mathbf{C}^{-1-}$ (well-posedness is open, even does not hold) and $\mathbb{E}\left|X_{t}\right|^{2} \asymp t \sqrt{\ln t}$.
\triangleright (Chatzigeorgiou-Morfe-Otto-Wang 2022), (Feltes-Weber 2022), ...

Scaling and conditions

- For any $\varepsilon>0$, we define $\tilde{W}_{t}:=\varepsilon^{-1} W_{\varepsilon^{2} t}, X_{t}^{\varepsilon}:=\varepsilon^{-1} X_{\varepsilon^{2} t}$ and have

$$
X_{t}^{\varepsilon}=X_{0}^{\varepsilon}+\int_{0}^{t} b^{\varepsilon}\left(s, X_{s}\right) \mathrm{d} s+\sqrt{2} \tilde{W}_{t}
$$

where $b^{\varepsilon}(t, x)=\varepsilon b\left(\varepsilon^{2} t, \varepsilon x\right)$.
\triangleright We note that for any $\alpha \geq 0$

$$
\left\|b^{\varepsilon}\right\|_{L_{t}^{q} \dot{H}^{-\alpha, p}}=\varepsilon^{1-\alpha-\frac{d}{p}-\frac{2}{q}}\|b\|_{L_{t}^{q} \dot{H}^{-\alpha, p}} .
$$

\triangleright Conditions:

* $\alpha+d / p+2 / q<1$: subcritical;
^ $\alpha+d / p+2 / q=1$: critical;
* $\alpha+d / p+2 / q>1$: supercritical.

Scaling and conditions

- For any $\varepsilon>0$, we define $\tilde{W}_{t}:=\varepsilon^{-1} W_{\varepsilon^{2} t}, X_{t}^{\varepsilon}:=\varepsilon^{-1} X_{\varepsilon^{2} t}$ and have

$$
X_{t}^{\varepsilon}=X_{0}^{\varepsilon}+\int_{0}^{t} b^{\varepsilon}\left(s, X_{s}\right) \mathrm{d} s+\sqrt{2} \tilde{W}_{t}
$$

where $b^{\varepsilon}(t, x)=\varepsilon b\left(\varepsilon^{2} t, \varepsilon x\right)$.
\triangleright We note that for any $\alpha \geq 0$

$$
\left\|b^{\varepsilon}\right\|_{L_{t}^{q} \dot{H}^{-\alpha, p}}=\varepsilon^{1-\alpha-\frac{d}{p}-\frac{2}{q}}\|b\|_{L_{t}^{q} \dot{H}^{-\alpha, p}} .
$$

\triangleright Conditions:

* $\alpha+d / p+2 / q<1$: subcritical;
^ $\alpha+d / p+2 / q=1$: critical;
* $\alpha+d / p+2 / q>1$: supercritical.
- We assume $b \in \mathbf{C}^{-\alpha}$ with some $\alpha \geq 0$ and consider the related PDE:

$$
\partial_{t} u=\Delta u+b \cdot \nabla u+f \stackrel{(\text { Schauder })}{\Rightarrow} u \in L_{T}^{\infty} \mathbf{C}^{2-\alpha}, \quad b \cdot \nabla u: \mathbf{C}^{-\alpha} \times \mathbf{C}^{1-\alpha} .
$$

\triangleright Conditions:

* $\alpha<1 / 2$: well-defined;
* $\alpha \geq 1 / 2$: ill-defined.

Examples

- Consider the following SDE:

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) \mathrm{d} s+\sqrt{2} W_{t} .
$$

- Results and models:
\triangleright (Krylov-Röckner 2005): $b \in L_{T}^{q} L_{x}^{p}$ with $d / p+2 / q<1$ (sub-well);
\triangleright (Röckner-Zhao 2022, Krylov 2021-2023): $b \in L_{T}^{q} L_{x}^{p}$ with $d / p+2 / q=1$ (critical-well);
\triangleright (Zhang-Zhao 2021): $b \in L_{T}^{q} L_{x}^{p}$ with $d / p+2 / q<2$ (super-well);
\triangleright (Flandoli-Issoglio-Russo 2017, Zhang-Zhao 2018):
$b \in H^{-\alpha, p}$ with $\alpha \in\left[0, \frac{1}{2}\right]$ and $\alpha+\frac{d}{p}<1$ (sub-well);
\triangleright (Delarue-Diel 2016, Cannizzaro-Chouk 2018): $b \in \mathbf{C}^{-2 / 3+}$ is some Gaussian noise (sub-ill);
\triangleright (Super-diffusive): $b \in \mathbf{C}^{-1-}$ (super-ill).

Examples

- Consider the following SDE:

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) \mathrm{d} s+\sqrt{2} W_{t} .
$$

- Results and models:
\triangleright (Krylov-Röckner 2005): $b \in L_{T}^{q} L_{x}^{p}$ with $d / p+2 / q<1$ (sub-well);
\triangleright (Röckner-Zhao 2022, Krylov 2021-2023): $b \in L_{T}^{q} L_{x}^{p}$ with $d / p+2 / q=1$ (critical-well);
\triangleright (Zhang-Zhao 2021): $b \in L_{T}^{q} L_{x}^{p}$ with $d / p+2 / q<2$ (super-well);
\triangleright (Flandoli-Issoglio-Russo 2017, Zhang-Zhao 2018): $b \in H^{-\alpha, p}$ with $\alpha \in\left[0, \frac{1}{2}\right]$ and $\alpha+\frac{d}{p}<1$ (sub-well);
\triangleright (Delarue-Diel 2016, Cannizzaro-Chouk 2018): $b \in \mathbf{C}^{-2 / 3+}$ is some Gaussian noise (sub-ill);
\triangleright (Super-diffusive): $b \in \mathbf{C}^{-1-}$ (super-ill).
- (Question) Whether we can obtain the solution to SDEs with supercritical \& ill-defined conditions?

The setting

- We assume $d \geq 2, b \in L_{T}^{q} H^{-1, p}$ with

$$
\frac{d}{p}+\frac{2}{q}<1, \quad \operatorname{div} b=0 \quad(\text { supercritical and ill-defined })
$$

and let $b_{n} \in \mathbf{C}_{b}^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{d}\right)$ with $\lim _{n \rightarrow \infty}\left\|b_{n}-b\right\|_{L_{T}^{q} H^{-1, p}}=0$. Consider the following approximating SDE

$$
X_{t}^{n}=X_{0}+\int_{0}^{t} b_{n}\left(s, X_{s}^{n}\right) \mathrm{d} s+\sqrt{2} W_{t}
$$

- We denote the distribution of $\left(X_{t}^{n}\right)_{t \in[0, T]}$ by $\mathbb{P}_{n} \in \mathcal{P}\left(C\left([0, T] ; \mathbb{R}^{d}\right)\right)$.

Main results

(1) Theorem 1.1 (H.-Zhang-Zhu-Zhu 2023+)

For any \mathscr{F}_{0} measurable random variable $X_{0},\left\{\mathbb{P}_{n}\right\}_{n=1}^{\infty}$ is tight in $\mathcal{P}\left(C\left([0, T] ; \mathbb{R}^{d}\right)\right)$.
Moreover, if the distribution of X_{0} has an L^{r} density w.r.t. the Lebesgue measure, where $1 / r+1 / p=1 / 2$, then there is a continuous process $\left(X_{t}\right)_{t \in[0, T]}$ such that

$$
X_{t}=X_{0}+\lim _{n \rightarrow \infty} \int_{0}^{t} b_{n}\left(r, X_{r}\right) \mathrm{d} r+\sqrt{2} W_{t}
$$

where the limit here is taken in $L^{2}(\Omega)$.

- When $b \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$ or $b \in L_{T}^{\infty} \mathbf{B}_{\infty, 2}^{-1}$ (critical \& ill-defined), there is only one accumulation point of $\left\{\mathbb{P}_{n}\right\}_{n=1}^{\infty}$. That is for any $b_{n} \rightarrow b, \mathbb{P}_{n}$ converges to the distribution of $\left(X_{t}\right)_{t \in[0, T]}$.

Application

- Let $\xi=\xi(x)$ be a two-dimensional Gaussian Free Field (GFF) and $\xi^{l o c}$ be the cut-off of it with compact support.
- Define

$$
b:=\nabla^{\perp} \xi^{l o c}:=\left(-\partial_{x_{2}} \xi_{1}^{l o c}, \partial_{x_{1}} \xi_{2}^{l o c}\right) \in \mathbf{C}^{-1-} \quad \operatorname{div} b=0
$$

- Let $b_{\varepsilon}:=b * \phi_{\varepsilon}$. We have for any $p \in(2, \infty)$

$$
\sup _{\varepsilon<1 / 2}\left\|\frac{b_{\varepsilon}}{\sqrt{\ln \varepsilon}}\right\|_{H^{-1, p}}<\infty, \quad \text { a.s. }
$$

By our results, one sees that the solutions $\left\{X_{t}^{\varepsilon}\right\}_{[0, T]}$ to the following approximation SDEs is tight

$$
\mathrm{d} X_{t}^{\varepsilon}=b_{\varepsilon}\left(X_{t}^{\varepsilon}\right) \mathrm{d} s+\sqrt{2} \mathrm{~d} W_{t}
$$

Sketch of the proof

- Consider the following backward PDE

$$
\partial_{t} u+\Delta u+b \cdot \nabla u+f=0, \quad u(T)=0 .
$$

- Formally, by Itô's formula, $\mathbb{E} \int_{0}^{T} f\left(r, X_{r}\right) \mathrm{d} r=\mathbb{E} u\left(0, X_{0}\right)$.

Sketch of the proof

- Consider the following backward PDE

$$
\begin{equation*}
\partial_{t} u+\Delta u+b \cdot \nabla u+f=0, \quad u(T)=0 . \tag{PDE}
\end{equation*}
$$

- Formally, by Itô's formula, $\mathbb{E} \int_{0}^{T} f\left(r, X_{r}\right) \mathrm{d} r=\mathbb{E} u\left(0, X_{0}\right)$.
\triangleright Well-defined: for approximating $b_{n},\left\langle u, b_{n} \cdot \nabla u\right\rangle=0 \Rightarrow$ cancels the "ill-defined" term by energy estimate.

Sketch of the proof

- Consider the following backward PDE

$$
\begin{equation*}
\partial_{t} u+\Delta u+b \cdot \nabla u+f=0, \quad u(T)=0 . \tag{PDE}
\end{equation*}
$$

- Formally, by Itô's formula, $\mathbb{E} \int_{0}^{T} f\left(r, X_{r}\right) \mathrm{d} r=\mathbb{E} u\left(0, X_{0}\right)$.
\triangleright Well-defined: for approximating $b_{n},\left\langle u, b_{n} \cdot \nabla u\right\rangle=0 \Rightarrow$ cancels the "ill-defined" term by energy estimate.
\triangleright By De Giorgi's method in (Zhang-Zhao 2021), we have

$$
\left|\mathbb{E} \int_{0}^{T} f\left(r, X_{r}\right) \mathrm{d} r\right| \leq\|u\|_{\mathbb{L}_{T}^{\infty}} \lesssim\|f\|_{L_{T}^{q} H^{-1, p}} \Rightarrow \text { tightness. }
$$

Sketch of the proof

- Consider the following backward PDE

$$
\begin{equation*}
\partial_{t} u+\Delta u+b \cdot \nabla u+f=0, \quad u(T)=0 . \tag{PDE}
\end{equation*}
$$

- Formally, by Itô's formula, $\mathbb{E} \int_{0}^{T} f\left(r, X_{r}\right) \mathrm{d} r=\mathbb{E} u\left(0, X_{0}\right)$.
\triangleright Well-defined: for approximating $b_{n},\left\langle u, b_{n} \cdot \nabla u\right\rangle=0 \Rightarrow$ cancels the "ill-defined" term by energy estimate.
\triangleright By De Giorgi's method in (Zhang-Zhao 2021), we have

$$
\left|\mathbb{E} \int_{0}^{T} f\left(r, X_{r}\right) \mathrm{d} r\right| \leq\|u\|_{\mathbb{L}_{T}^{\infty}} \lesssim\|f\|_{L_{T}^{q} H^{-1, p}} \Rightarrow \text { tightness. }
$$

- (Problem): Since we don't know whether $\langle u, b \cdot \nabla u\rangle=0$ holds a priority, we don't have the uniqueness of (PDE).
\triangleright Once $b \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$ or $b \in L_{T}^{\infty} \mathbf{B}_{\infty, 2}^{-1}$, we have $\langle u, b \cdot \nabla u\rangle=0$. Thus we have the uniqueness and stability.

Sketch of the proof

- Consider the following backward PDE

$$
\begin{equation*}
\partial_{t} u+\Delta u+b \cdot \nabla u+f=0, \quad u(T)=0 . \tag{PDE}
\end{equation*}
$$

- Formally, by Itô's formula, $\mathbb{E} \int_{0}^{T} f\left(r, X_{r}\right) \mathrm{d} r=\mathbb{E} u\left(0, X_{0}\right)$.
\triangleright Well-defined: for approximating $b_{n},\left\langle u, b_{n} \cdot \nabla u\right\rangle=0 \Rightarrow$ cancels the "ill-defined" term by energy estimate.
\triangleright By De Giorgi's method in (Zhang-Zhao 2021), we have

$$
\left|\mathbb{E} \int_{0}^{T} f\left(r, X_{r}\right) \mathrm{d} r\right| \leq\|u\|_{\mathbb{L}_{T}^{\infty}} \lesssim\|f\|_{L_{T}^{q} H^{-1, p}} \Rightarrow \text { tightness. }
$$

- (Problem): Since we don't know whether $\langle u, b \cdot \nabla u\rangle=0$ holds a priority, we don't have the uniqueness of (PDE).
\triangleright Once $b \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$ or $b \in L_{T}^{\infty} \mathbf{B}_{\infty, 2}^{-1}$, we have $\langle u, b \cdot \nabla u\rangle=0$. Thus we have the uniqueness and stability.
- We can find a bounded linear operator

$$
A: L_{T}^{q} H^{-1, p} \rightarrow L_{T}^{\infty} L^{\infty} \cap L_{T}^{2} H^{1,2}
$$

such that for any $f, u=A f$ solves (PDE).

Martingale solution

(1) Theorem 1.2 (H.-Zhang-Zhu-Zhu 2023+)

There is a set $I \subset[0, T]$ containing 0 and T of full measure such that for any distribution μ_{0} which has an L^{2} density w.r.t. the Lebesgue measure, there is a unique measure $\mathbb{P} \in \mathcal{P}\left(C\left([0, T] ; \mathbb{R}^{d}\right)\right)$ such that for any $f \in C\left([0, T] ; C_{0}\left(\mathbb{R}^{d}\right)\right)$

$$
M_{t}:=A f\left(t, w_{t}\right)-A f\left(0, w_{0}\right)-\int_{0}^{t} f\left(r, w_{r}\right) \mathrm{d} r
$$

is a \mathbb{P}-martingale on I and $\mathbb{P} \circ w_{0}^{-1}=\mu_{0}$.

Martingale solution

(1) Theorem 1.2 (H.-Zhang-Zhu-Zhu 2023+)

There is a set $I \subset[0, T]$ containing 0 and T of full measure such that for any distribution μ_{0} which has an L^{2} density w.r.t. the Lebesgue measure, there is a unique measure $\mathbb{P} \in \mathcal{P}\left(C\left([0, T] ; \mathbb{R}^{d}\right)\right)$ such that for any $f \in C\left([0, T] ; C_{0}\left(\mathbb{R}^{d}\right)\right)$

$$
M_{t}:=A f\left(t, w_{t}\right)-A f\left(0, w_{0}\right)-\int_{0}^{t} f\left(r, w_{r}\right) \mathrm{d} r
$$

is a \mathbb{P}-martingale on I and $\mathbb{P} \circ w_{0}^{-1}=\mu_{0}$.

- When $b \in L^{2}\left([0, T] \times \mathbb{R}^{d}\right)$ or $b \in L_{T}^{\infty} \mathbf{B}_{\infty, 2}^{-1}, A f$ is the unique solution to (PDE).
- Uniqueness of $\mathrm{PDE} \Rightarrow$ the unique accumulation point of $\left\{\mathbb{P}_{n}\right\}_{n=1}^{\infty}$.

Subcritical cases

(2) Theorem 1.3 (H.-Zhang-Zhu-Zhu 2023+)

Assume that $b \in L_{T}^{q} H^{-\alpha, p}$ with some $\alpha \in(0,1), \Gamma:=\alpha+d / p+2 / q<1$ and $\operatorname{div} b=0$. For any \mathscr{F}_{0} measurable random variable X_{0}, there is a unique (in law) continuous process $\left(X_{t}\right)_{t \in[0, T]}$ such that

$$
X_{t}=X_{0}+\lim _{n \rightarrow \infty} \int_{0}^{t} b_{n}\left(r, X_{r}\right) \mathrm{d} r+\sqrt{2} W_{t}
$$

where the limit here is taken in $L^{2}(\Omega)$, and for any $m \in \mathbb{N}$ and smooth functions f

$$
\begin{equation*}
\mathbb{E}\left|\int_{s}^{t} f\left(r, X_{r}\right) \mathrm{d} r\right|^{m} \leq C_{m}|t-s|^{(2-\Gamma) m / 2}\|f\|_{L_{T}^{q} H^{-\alpha, p}}^{m} \tag{1}
\end{equation*}
$$

- Property (1) implies that $t \rightarrow \lim _{n \rightarrow \infty} \int_{0}^{t} b_{n}\left(r, X_{r}\right) \mathrm{d} r$ is a zero energy process.

Sketch of the proof

- In (PDE), we define

$$
b \cdot \nabla u:=\operatorname{div}(b \prec u+b \circ u)+b \succ \nabla u,
$$

which by paraproduct implies that

$$
\begin{aligned}
\|b \cdot \nabla u\|_{L_{T}^{q} \mathbf{B}_{p, \infty}^{-\infty}} & \lesssim\|b \prec u+b \circ u\|_{L_{T}^{q} \mathbf{B}_{p, \infty}^{1-\alpha}}+\kappa_{b}\|\nabla u\|_{\mathbb{L}_{T}^{\infty}} \\
& \lesssim \kappa_{b}\left(\|u\|_{L_{T}^{\infty} \mathbf{B}_{\infty}^{1}, \infty}+\|\nabla u\|_{\mathbb{L}_{T}^{\infty}}\right) .
\end{aligned}
$$

Sketch of the proof

- In (PDE), we define

$$
b \cdot \nabla u:=\operatorname{div}(b \prec u+b \circ u)+b \succ \nabla u,
$$

which by paraproduct implies that

$$
\begin{aligned}
\|b \cdot \nabla u\|_{L_{T}^{q} \mathbf{B}_{p, \infty}^{-\alpha}} & \lesssim\|b \prec u+b \circ u\|_{L_{T}^{q} \mathbf{B}_{p, \infty}^{1-\alpha}}+\kappa_{b}\|\nabla u\|_{\mathbb{L}_{T}^{\infty}} \\
& \lesssim \kappa_{b}\left(\|u\|_{L_{T}^{\infty} \mathbf{B}_{\infty}^{1}, \infty}+\|\nabla u\|_{\mathbb{L}_{T}^{\infty}}\right) .
\end{aligned}
$$

- Therefore, we have

$$
\|u\|_{L_{T}^{\infty} \mathbf{B}_{p, \infty}^{2-\alpha-2 / q}} \leq C\|f\|_{L_{T}^{\infty} \mathbf{B}_{p, \infty}^{-\alpha}} \quad \text { and } \quad \lim _{\delta \rightarrow 0} \sup _{|t-s| \leq \delta, t, s \in[0, T]}\|\nabla u(t)-\nabla u(s)\|_{L^{\infty}}=0 .
$$

- Then we can construct the Zvonkin's transformation by taking $f=b$ and $\Phi_{t}(x):=x+u(t, x)$.

Rough path and RDE

- For a.s. $\omega \in \Omega$, the Brownian motion $W_{t}(\omega)$, which is in some probabaility space $(\Omega, \mathscr{F}, \mathbb{P})$, can be regarded as a rough path with

$$
\left|W_{t}(\omega)-W_{s}(\omega)\right| \leq C|t-s|^{\alpha}, \quad\left|\mathbb{W}_{s, t}\right|:=\left|\int_{s}^{t}\left(W_{r}-W_{s}\right) \mathrm{d} W_{s}(\omega)\right| \leq C|t-s|^{2 \alpha}
$$

for any $\alpha \in(1,1 / 2)$. We denote $\mathbf{W}:=(W, \mathbb{W})$.

Rough path and RDE

- For a.s. $\omega \in \Omega$, the Brownian motion $W_{t}(\omega)$, which is in some probabaility space $(\Omega, \mathscr{F}, \mathbb{P})$, can be regarded as a rough path with

$$
\left|W_{t}(\omega)-W_{s}(\omega)\right| \leq C|t-s|^{\alpha}, \quad\left|\mathbb{W}_{s, t}\right|:=\left|\int_{s}^{t}\left(W_{r}-W_{s}\right) \mathrm{d} W_{s}(\omega)\right| \leq C|t-s|^{2 \alpha}
$$

for any $\alpha \in(1,1 / 2)$. We denote $\mathbf{W}:=(W, \mathbb{W})$.

- Then for any $\sigma=\sigma(x) \in \mathbf{C}_{b}^{2}$ the following rough differential equations (RDEs)

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{r}\right) \mathrm{d} \mathbf{W}_{r} \tag{RDE}
\end{equation*}
$$

is well-defined by

$$
\int_{0}^{t} \sigma\left(X_{r}\right) \mathrm{d} \mathbf{W}_{r}:=\lim _{|\pi| \rightarrow 0} \sum_{r, s \in \pi}\left(\sigma\left(X_{r}\right)\left(W_{s}-W_{r}\right)+\sigma\left(X_{r}\right) \nabla \sigma\left(X_{r}\right) \mathbb{W}_{r, s}\right)
$$

where π is any partition of $[0, t]$.

- When $\sigma \in \mathbf{C}^{3}$, there is a unique solution to (RDE).

Main results

(1) Theorem 2.1 (H.-Lê 2023+)

Let $T>0$. Assume that $b \in L_{T}^{q} L^{p}$ with some $d / p+2 / q<1$ and $p>2$. There is a event $\Omega_{b, T}$ of full measure such that for any $\omega \in \Omega_{b, T}$ and $x \in \mathbb{R}^{d}$, there is a unique solution to the following RDE

$$
X_{t}=x+\int_{0}^{t} b\left(r, X_{r}\right) \mathrm{d} r+\int_{0}^{t} \sigma\left(X_{r}\right) \mathrm{d} \mathbf{W}_{r}(\omega)
$$

with

$$
\int_{0}^{t}\left|b\left(r, X_{r}\right)\right| \mathrm{d} r<\infty
$$

Main results

(1) Theorem 2.1 (H.-Lê 2023+)

Let $T>0$. Assume that $b \in L_{T}^{q} L^{p}$ with some $d / p+2 / q<1$ and $p>2$. There is a event $\Omega_{b, T}$ of full measure such that for any $\omega \in \Omega_{b, T}$ and $x \in \mathbb{R}^{d}$, there is a unique solution to the following RDE

$$
X_{t}=x+\int_{0}^{t} b\left(r, X_{r}\right) \mathrm{d} r+\int_{0}^{t} \sigma\left(X_{r}\right) \mathrm{d} \mathbf{W}_{r}(\omega)
$$

with

$$
\int_{0}^{t}\left|b\left(r, X_{r}\right)\right| \mathrm{d} r<\infty
$$

- The uniqueness here is in path-by-path sense. That is for any fixed $\omega \in \Omega_{b, T}$ and solutions X_{t} and Y_{t} with $X_{0}=Y_{0}$, we have $\left(X_{t}\right)_{t \in[0, T]}=\left(Y_{t}\right)_{t \in[0, T]}$ (no a.s.).
- The existence allows us to construct solution $\left(X_{t}\right)_{t \in[0, T]}$ with any $X_{0}(\omega)$, even if X_{0} is not measurable.

Main results

(1) Theorem 2.1 (H.-Lê 2023+)

Let $T>0$. Assume that $b \in L_{T}^{q} L^{p}$ with some $d / p+2 / q<1$ and $p>2$. There is a event $\Omega_{b, T}$ of full measure such that for any $\omega \in \Omega_{b, T}$ and $x \in \mathbb{R}^{d}$, there is a unique solution to the following RDE

$$
X_{t}=x+\int_{0}^{t} b\left(r, X_{r}\right) \mathrm{d} r+\int_{0}^{t} \sigma\left(X_{r}\right) \mathrm{d} \mathbf{W}_{r}(\omega)
$$

with

$$
\int_{0}^{t}\left|b\left(r, X_{r}\right)\right| \mathrm{d} r<\infty
$$

- The uniqueness here is in path-by-path sense. That is for any fixed $\omega \in \Omega_{b, T}$ and solutions X_{t} and Y_{t} with $X_{0}=Y_{0}$, we have $\left(X_{t}\right)_{t \in[0, T]}=\left(Y_{t}\right)_{t \in[0, T]}$ (no a.s.).
- The existence allows us to construct solution $\left(X_{t}\right)_{t \in[0, T]}$ with any $X_{0}(\omega)$, even if X_{0} is not measurable.
- When $\sigma=\mathbb{I}$, this result has been obtained in (Anzeletti-Lê-Ling 2023).

Crucial of the proof

- Consider the following semi-flow

$$
\phi_{t}^{s, x}=x+\int_{s}^{t} \sigma\left(\phi_{r}^{s, x}\right) \mathrm{d} \mathbf{W}_{r} .
$$

- (Davie's estimate)

$$
\mathbb{E}\left|\int_{s}^{t}\left(b\left(\phi_{r}^{s, x}\right)-b\left(\phi_{r}^{s, y}\right)\right) d r\right|^{m} \lesssim|x-y|^{m}|t-s|^{\alpha}\|b\|_{L_{q}^{p}(T)}^{m} .
$$

Crucial of the proof

- Consider the following semi-flow

$$
\phi_{t}^{s, x}=x+\int_{s}^{t} \sigma\left(\phi_{r}^{s, x}\right) \mathrm{d} \mathbf{W}_{r} .
$$

- (Davie's estimate)

$$
\mathbb{E}\left|\int_{s}^{t}\left(b\left(\phi_{r}^{s, x}\right)-b\left(\phi_{r}^{s, y}\right)\right) d r\right|^{m} \lesssim|x-y|^{m}|t-s|^{\alpha}\|b\|_{L_{q}^{p}(T)}^{m} .
$$

- When $\sigma=\mathbb{I}$, in (Anzeletti-Lê-Ling 2023), $\phi_{t}^{s, x}=x+W_{t}-W_{s}$ and it is sufficient to show

$$
\sup _{x \in \mathbb{R}^{d}} \mathbb{E}\left|\int_{s}^{t} \nabla b\left(x+W_{r}\right) d r\right|^{m} \lesssim|t-s|^{\alpha}\|b\|_{L_{q}^{p}(T)}^{m}
$$

Crucial of the proof

- Consider the following semi-flow

$$
\phi_{t}^{s, x}=x+\int_{s}^{t} \sigma\left(\phi_{r}^{s, x}\right) \mathrm{d} \mathbf{W}_{r}
$$

- (Davie's estimate)

$$
\mathbb{E}\left|\int_{s}^{t}\left(b\left(\phi_{r}^{s, x}\right)-b\left(\phi_{r}^{s, y}\right)\right) d r\right|^{m} \lesssim|x-y|^{m}|t-s|^{\alpha}\|b\|_{L_{q}^{p}(T)}^{m} .
$$

- When $\sigma=\mathbb{I}$, in (Anzeletti-Lê-Ling 2023), $\phi_{t}^{s, x}=x+W_{t}-W_{s}$ and it is sufficient to show

$$
\sup _{x \in \mathbb{R}^{d}} \mathbb{E}\left|\int_{s}^{t} \nabla b\left(x+W_{r}\right) d r\right|^{m} \lesssim|t-s|^{\alpha}\|b\|_{L_{q}^{p}(T)}^{m}
$$

- (Method)

The relation between the PDE and the SDE.

Further works

- Uniqueness in the supercritical cases.
- Characterize the limit of the approximation solutions to the SDEs with drift $b=\nabla^{\perp}$ GFF.
- RDEs with "singular" diffusion coefficients.

Thank you!

